
The full-function driver

5.1 The driver's source code
5.2 Driver name and symbolic link name
5.3 Writing DriverEntry Routine

5.3.1 Creating Virtual Device
5.3.2 Creating Symbolic Link
5.3.3 Announcing the Dispatch Routines
5.3.4 Cleanup
5.3.5 New objects are here

5.4 I/O Dispatch Routines
5.5 Dispatch Routine for IRP_MJ_CREATE and IRP_MJ_CLOSE
5.6 Calling conventions
5.7 Memory buffer management

5.7.1 Buffered I/O
5.7.2 Direct I/O
5.7.3 Neither I/O

5.8 Dispatch Routine for IRP_MJ_DEVICE_CONTROL
5.9 Memory Address Translation
5.10 DriverUnload Routine
5.11 How to compile
5.12 Adding resources
5.13 A little more words about debugging

 Source code: KmdKit\examples\simple\VirtToPhys

5.1 The driver's source code

Now it's time to take a look at full-function driver's source code. Here it is:

;@echo off
;goto make

;:::
;
; VirtToPhys - Kernel Mode Driver
;
; Translates virtual addres to physical address
;
;:::

.386

.model flat, stdcall
option casemap:none

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\ntoskrnl.inc
include \masm32\include\w2k\w2kundoc.inc

includelib \masm32\lib\w2k\ntoskrnl.lib

include \masm32\Macros\Strings.mac

include ..\common.inc

;:::
; C O N S T A N T S
;:::

.const
CCOUNTED_UNICODE_STRING "\\Device\\devVirtToPhys", g_usDeviceName, 4
CCOUNTED_UNICODE_STRING "\\??\\slVirtToPhys", g_usSymbolicLinkName, 4

;:::
; C O D E
;:::

.code

;:::
; GetPhysicalAddress
;:::

GetPhysicalAddress proc dwAddress:DWORD

 mov eax, dwAddress
 mov ecx, eax

 shr eax, 22
 shl eax, 2

 mov eax, [0C0300000h][eax]

 .if (eax & (mask pde4kValid))
 .if !(eax & (mask pde4kLargePage))
 mov eax, ecx
 shr eax, 10
 and eax, 1111111111111111111100y
 add eax, 0C0000000h
 mov eax, [eax]

 .if eax & (mask pteValid)
 and eax, mask ptePageFrameNumber

 and ecx, 00000000000000000000111111111111y
 add eax, ecx
 .else
 xor eax, eax
 .endif
 .else
 and eax, mask pde4mPageFrameNumber
 and ecx, 00000000001111111111111111111111y
 add eax, ecx
 .endif
 .else
 xor eax, eax
 .endif

 ret

GetPhysicalAddress endp

;:::
; DispatchCreateClose
;:::

DispatchCreateClose proc pDeviceObject:PDEVICE_OBJECT, pIrp:PIRP

 mov eax, pIrp
 assume eax:ptr _IRP
 mov [eax].IoStatus.Status, STATUS_SUCCESS
 and [eax].IoStatus.Information, 0
 assume eax:nothing

 fastcall IofCompleteRequest, pIrp, IO_NO_INCREMENT

 mov eax, STATUS_SUCCESS
 ret

DispatchCreateClose endp

;:::
; DispatchControl
;:::

DispatchControl proc uses esi edi ebx pDeviceObject:PDEVICE_OBJECT, pIrp:PIRP

local status:NTSTATUS
local dwBytesReturned:DWORD

 and dwBytesReturned, 0

 mov esi, pIrp
 assume esi:ptr _IRP

 IoGetCurrentIrpStackLocation esi
 mov edi, eax
 assume edi:ptr IO_STACK_LOCATION

 .if [edi].Parameters.DeviceIoControl.IoControlCode == IOCTL_GET_PHYS_ADDRESS
 .if ([edi].Parameters.DeviceIoControl.OutputBufferLength >= DATA_SIZE) && ([edi].Parameters.
DeviceIoControl.InputBufferLength >= DATA_SIZE)

 mov edi, [esi].AssociatedIrp.SystemBuffer
 assume edi:ptr DWORD

 xor ebx, ebx
 .while ebx < NUM_DATA_ENTRY

 invoke GetPhysicalAddress, [edi][ebx*(sizeof DWORD)]

 mov [edi][ebx*(sizeof DWORD)], eax
 inc ebx
 .endw

 mov dwBytesReturned, DATA_SIZE
 mov status, STATUS_SUCCESS
 .else
 mov status, STATUS_BUFFER_TOO_SMALL
 .endif
 .else
 mov status, STATUS_INVALID_DEVICE_REQUEST
 .endif

 assume edi:nothing

 push status
 pop [esi].IoStatus.Status

 push dwBytesReturned
 pop [esi].IoStatus.Information

 assume esi:nothing

 fastcall IofCompleteRequest, pIrp, IO_NO_INCREMENT

 mov eax, status
 ret

DispatchControl endp

;:::
; DriverUnload
;:::

DriverUnload proc pDriverObject:PDRIVER_OBJECT

 invoke IoDeleteSymbolicLink, addr g_usSymbolicLinkName

 mov eax, pDriverObject
 invoke IoDeleteDevice, (DRIVER_OBJECT PTR [eax]).DeviceObject

 ret

DriverUnload endp

;:::
; D I S C A R D A B L E C O D E
;:::

.code INIT

;:::
; DriverEntry
;:::

DriverEntry proc pDriverObject:PDRIVER_OBJECT, pusRegistryPath:PUNICODE_STRING

local status:NTSTATUS
local pDeviceObject:PVOID

 mov status, STATUS_DEVICE_CONFIGURATION_ERROR

 invoke IoCreateDevice, pDriverObject, 0, addr g_usDeviceName, FILE_DEVICE_UNKNOWN, \
 0, FALSE, addr pDeviceObject

 .if eax == STATUS_SUCCESS
 invoke IoCreateSymbolicLink, addr g_usSymbolicLinkName, addr g_usDeviceName
 .if eax == STATUS_SUCCESS
 mov eax, pDriverObject
 assume eax:PTR DRIVER_OBJECT
 mov [eax].MajorFunction[IRP_MJ_CREATE*(sizeof PVOID)], offset DispatchCreateClose
 mov [eax].MajorFunction[IRP_MJ_CLOSE*(sizeof PVOID)], offset DispatchCreateClose
 mov [eax].MajorFunction[IRP_MJ_DEVICE_CONTROL*(sizeof PVOID)], offset DispatchControl
 mov [eax].DriverUnload, offset DriverUnload
 assume eax:nothing
 mov status, STATUS_SUCCESS
 .else
 invoke IoDeleteDevice, pDeviceObject
 .endif
 .endif

 mov eax, status

 ret

DriverEntry endp

;:::
;
;:::

end DriverEntry

:make

set drv=VirtToPhys

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native /ignore:4078 %drv%.
obj rsrc.obj

del %drv%.obj
move %drv%.sys ..

echo.
pause

5.2 Driver name and symbolic link name

Let's start with the definition of UNICODE_STRING structures, describing the device and symbolic link names. As I've already
mentioned, kernel likes to work with strings in this format.

Inside of absolutely all drivers sources, both assembly and C, I meet the same senseless sequence like this:

.const
uszDeviceName dw "\", "D", "e", "v", "i", "c", "e", "\", "D", "e", "v", "N", "a", "m", "e", 0
uszSymbolicLinkName dw "\", "?", "?", "\", "D", "e", "v", "N", "a", "m", "e", 0

.code
DriverEntry proc . . .
. . .
local usDeviceName:UNICODE_STRING
local usSymbolicLinkName:UNICODE_STRING
. . .
 invoke RtlInitUnicodeString, addr usDeviceName, offset uszDeviceName
 invoke RtlInitUnicodeString, addr usSymbolicLinkName, offset uszSymbolicLinkName

The purpose of the RtlInitUnicodeString is to measure unicode-string and to fill UNICODE_STRING structure in. Since the unicode-
strings in this code are defined statically, i.e. never will be changed, it is possible to fill UNICODE_STRING structure in at a link time. It
is easier, more visual and saves a few bytes (8 bytes for UNICODE_STRING structure + maximum 3 bytes for alignment against the
minimum 14 bytes for RtlInitUnicodeString call). That's why I don't like this way. Thus I use CCOUNTED_UNICODE_STRING macro for
this. And all above code will turn into two elegant lines.

CCOUNTED_UNICODE_STRING "\\Device\\DevName", usDeviceName, 4
CCOUNTED_UNICODE_STRING "\\??\\DevName", usSymbolicLinkName, 4

Having agreed with me you can define your driver and symbolic link names like this:

.const
CCOUNTED_UNICODE_STRING "\\Device\\devVirtToPhys", g_usDeviceName, 4
CCOUNTED_UNICODE_STRING "\\??\\slVirtToPhys", g_usSymbolicLinkName, 4

On the earlier releases of Windows NT there is no "\??" directory in the Object Manager namespace. In this case it is necessary to
change "\??" to "\DosDevices". In the later Windows releases it will also work, since for backward compatibility there is a symbolic link
"\DosDevices" in root directory of the Object Manager namespace, which points to "\??".

5.3 Writing DriverEntry Routine

Every kernel-mode driver has to expose a routine whose name is DriverEntry (you can give it any name you like, by the way), which
initializes driver-wide data structures. The I/O Manager calls the DriverEntry routine when it loads the driver. DriverEntry routine runs
at IRQL = PASSIVE_LEVEL, which means it can access paged system resources. DriverEntry runs in the System process context.

Before we go further, pay attention at this line:

.code INIT

All code marked like this is directed into the INIT section because it's not needed once the driver finishes initializing. The code inside the
INIT section can be discarded as soon as the driver returns from its DriverEntry. It's up to the system to decide when to discard it.

It has no big sense for our tiny driver because its sections are 32-bytes aligned (we pass /align:32 key to the linker). Thus all its
sections occupy only one page. And it will not be discarded at all even if we mark with "INIT" some lines. Previous Windows NT drivers
had large DriverEntry routine that had to create device objects, locate resources, configure devices, and so on. In this case using of this
feature is lead to significant memory savings. So if your DriverEntry is big enough it is meaningful to place it in a separate section
marked as "INIT". I have already told about this section in third part.

 mov status, STATUS_DEVICE_CONFIGURATION_ERROR

Assume that driver initialization will fail. If it happens, this error code returns to the system, and user-mode call StartService will also
fail.

5.3.1 Creating Virtual Device

 invoke IoCreateDevice, pDriverObject, 0, addr g_usDeviceName, FILE_DEVICE_UNKNOWN, \
 0, FALSE, addr pDeviceObject

Since the main driver purpose is to control some device, physical, virtual, or logical, we firstly have to create such device (virtual one in
our case). We achieve this by calling IoCreateDevice that is used to create and initialize a device object (see DEVICE_OBJECT structure)
for use by the driver. And here is its prototype:

IoCreateDevice proto stdcall DriverObject:PDRIVER_OBJECT, DeviceExtensionSize:DWORD, \
 DeviceName:PUNICODE_STRING, DeviceType:DEVICE_TYPE, \
 DeviceCharacteristics:DWORD, Exclusive:BOOL, \
 DeviceObject: PDEVICE_OBJECT

Parameter Description

DriverObject Points to the driver object (DRIVER_OBJECT structure). Each driver receives a pointer to its driver object as a
parameter to its DriverEntry routine;

DeviceExtensionSize Specifies the driver-determined number of bytes to be allocated for the device extension of the device object. The
internal structure of the device extension is driver-defined.

It has no sense to use it in our simple driver.

DeviceName Optionally points to a buffer containing a zero-terminated Unicode string that names the device object. The string
must be a full path name. Full path here means not a path to some file on HDD, but the path to object as it
appears in Object Manager namespace.

And this parameter is mandatory for us. We should create the named device, otherwise we can't create the
symbolic link, and the user-mode can't get access to our device;

The device name must be unique of course.

DeviceType Specifies one of the system-defined FILE_DEVICE_XXX constants indicating the type of device or the driver-defined
value for a new type of device.

We use FILE_DEVICE_UNKNOWN.

DeviceCharacteristics Specifies additional information about the driver's device.

We have nothing like this. So it will be 0.

Exclusive Indicates whether the device object represents an exclusive device. That is, only one handle at a time can send I/O
requests to the corresponding device object.

Last time I said that I did not manage to get exclusive access to the device using dwShareMode parameter of the
CreateFile. It can be done with Exclusive.

We don't need to own our device exclusively. So we pass FALSE.

DeviceObject Points to the newly created device object (DEVICE_OBJECT structure) if the call succeeds.

If next call to IoCreateSymbolicLink will fail we must remove our device object from the system. So, we save
pointer to device object returned by IoCreateDevice in local variable pDeviceObject for future use.

We need this pointer also by unloading the driver. But at that point we can obtain it from the driver object itself.

You can save this pointer in a global variable or somewhere else. But I'm just don't want to create ?data section for
this purpose only.

5.3.2 Creating Symbolic Link

 .if eax == STATUS_SUCCESS
 invoke IoCreateSymbolicLink, addr g_usSymbolicLinkName, addr g_usDeviceName

If new device was created successfully we have to make it visible to the Win32 subsystem by creating a symbolic link (you have already
know what this is). To create a symbolic link we call IoCreateSymbolicLink. This function takes an existing device name and a symbolic
link name (both passed as UNICODE_STRING data types).

5.3.3 Announcing the Dispatch Routines

 .if eax == STATUS_SUCCESS
 mov eax, pDriverObject
 assume eax:PTR DRIVER_OBJECT
 mov [eax].MajorFunction[IRP_MJ_CREATE*(sizeof PVOID)], offset DispatchCreateClose
 mov [eax].MajorFunction[IRP_MJ_CLOSE*(sizeof PVOID)], offset DispatchCreateClose
 mov [eax].MajorFunction[IRP_MJ_DEVICE_CONTROL*(sizeof PVOID)], offset DispatchControl

If the symbolic link was successfully created we are at the next step.

Each driver object contains an array of function pointers to dispatch routines specific to the I/O request. Each driver must set at least
one dispatch entry point in this array for the IRP_MJ_XXX requests which the driver handles. Any driver can set as many separate
dispatch entry points as the IRP_MJ_XXX codes for the driver to handle. For example, if you want to receive the notice that the system
is being shut down, you must "announce" the dispatch routine for such request. And you do that by placing the appropriate dispatch
routine address into the IRP_MJ_SHUTDOWN slot of the MajorFunction table of the driver object. If you don't need to process such
request you simply do nothing because the I/O Manager fills the entire MajorFunction table of the driver object with the pointers to the
system internal routine IopInvalidDeviceRequest, which returns an error to the original caller before calling DriverEntry.

So, it's your responsibility to provide dispatch routines for each I/O function code you want to process.

We have to handle three types of I/O request packet in our driver. Every kernel-mode driver must support the function code
IRP_MJ_CREATE since this code is generated in response to the Win32 CreateFile call. Without support for this code, Win32 applications
would have no way to obtain a handle to the device. Similarly, the IRP_MJ_CLOSE must also be supported to handle the Win32
CloseHandle call. And IRP_MJ_DEVICE_CONTROL allows for extended requests from user-mode clients through the Win32
DeviceIoControl call.

••• ç••đî•• Description

IRP_MJ_CREATE I/O Manager sends it when a user-mode code has requested a handle for the file object that represents the
target device object by calling CreateFile function.

IRP_MJ_DEVICE_CONTROL I/O Manager sends it when a user-mode code has called the DeviceIoControl function.

IRP_MJ_CLOSE I/O Manager sends it when the handle of the file object that represents the target device object has been
released by calling CloseHandle function.

We handle IRP_MJ_CREATE and IRP_MJ_CLOSE in one DispatchCreateClose routine. I'll tell you a bit later about this.

In ntddk.inc, among others, you can find IRP_MJ_XXX codes that can be of interest for us:

IRP_MJ_CREATE equ 0
. . .
IRP_MJ_CLOSE equ 2
IRP_MJ_READ equ 3
IRP_MJ_WRITE equ 4
. . .
IRP_MJ_DEVICE_CONTROL equ 0Eh
. . .
IRP_MJ_CLEANUP equ 12h

All IRP_MJ_XXX codes are listed in ntddk.inc. Each IRP_MJ_XXX code is the index in MajorFunction array. The preceding code snippet
fills three slots of the MajorFunction array.

 mov [eax].DriverUnload, offset DriverUnload

The purpose of DriverUnload function is to clean up after any global initialization DriverEntry might have done. If we want to
dynamically unload the driver we have to supply the pointer to unload routine. This routine will be called by the system when the user-
mode calls ControlService with SERVICE_CONTROL_STOP.

 assume eax:nothing
 mov status, STATUS_SUCCESS

If we have safely reached this point the driver was successfully initialized. So we report success to the system by returning
STATUS_SUCCESS.

5.3.4 Cleanup

 .else
 invoke IoDeleteDevice, pDeviceObject
 .endif

 .endif

If the call to IoCreateSymbolicLink returns an error, we should release any allocated resources. So, we have to delete device object
created by previous call to IoCreateDevice. And by calling IoDeleteDevice we remove device object from the system. If you have
allocated some other resources you also have to return it back to the system of course.

Please always remember you must keep track of the memory you've allocated and any other allocated resources in order to release it
when it's no longer needed. You are in the kernel-mode and must do all duty work by yourself. No one else will do that for you!

 mov eax, status
 ret

We return the current status code to the system. If it's STATUS_SUCCESS, the driver remains in the memory and the I/O Manager will
route IRP to it. If it has any other value, the driver is removed.

5.3.5 New objects are here

Thus, after successful DriverEntry completion three new objects appear in the system: the driver "\Driver\VirtToPhys", the device
"\Device\devVirtToPhys" and the symbolic link "\??\slVirtToPhys" to the device.

● The driver object represents an individual driver in the system.

From this object the I/O Manager obtains the address of each driver's dispatch routine.

● The device object represents a device on the system and describes its characteristics.

Via this object the I/O Manager obtains the pointer to the driver object that manages this device.

● The file object, representing device object for user-mode.

Using this object the I/O Manager obtains the pointer to the representing device object.

● The symbolic link that is visible to user-mode.

The symbolic link is used by the Object Manager.

Figure 5-1 shows the main interrelations between these objects. This scheme will help you to understand a further material more
thoroughly.

Figure 5-1. The main interrelations between the driver, device and file object.

5.4 I/O Dispatch Routines

The I/O Manager invokes Dispatch routines in response to user-mode or kernel-mode requests. In the case of monolithic or highest-
level driver you are guaranteed that Dispatch routines run in the same thread context as the initiator of the I/O requests. Like the
driver's DriverEntry routine, Dispatch routines run at IRQL = PASSIVE_LEVEL, which means they can access paged system resources.

Each Dispatch routine is declared as follows:

DispatchRoutine proto stdcall pDeviceObject:PDEVICE_OBJECT, pIrp:PIRP

Parameter Description

pDeviceObject Pointer to the device object (DEVICE_OBJECT structure).

If the driver serves some devices, it can determine, who is addressee of the IRP.

pIrp Pointer to IRP (_IRP structure) describing I/O request.

The I/O Manager creates an IRP describing the I/O request and sends its pointer to the device driver in pIrp parameter.
It's up to the device driver how to handle this IRP.

Such uniform interface that Dispatch routines present allows the I/O Manager to call any driver without requiring any special knowledge
of its structure or internal details.

5.5 Dispatch Routine for IRP_MJ_CREATE and IRP_MJ_CLOSE

Why such different types of IRP are processed by only one Dispatch routine? In our simple driver the only thing we have to do by
processing IRP_MJ_CREATE and IRP_MJ_CLOSE requests is to mark IRP as completed.

If separate processing for create and close requests is required you must implement separate DispatchCreate and DispatchClose
routines.

As I have already mentioned IRP_MJ_CREATE is generated in response to the CreateFile call. Without support of this code, Win32
applications would have no way to obtain a handle to the device. The mutual close IRP_MJ_CLOSE must also be supported to handle the
CloseHandle call.

DispatchCreateClose proc pDeviceObject:PDEVICE_OBJECT, pIrp:PIRP

 mov eax, pIrp
 assume eax:ptr _IRP
 mov [eax].IoStatus.Status, STATUS_SUCCESS
 and [eax].IoStatus.Information, 0
 assume eax:nothing

We fill the I/O status block determining a condition of the IRP.

The Information member of the I/O status block is set to zero indicating the handle to the device can be opened for the create request.
Information field has no meaning for the close request. This member may have some other meaning for the other IRP types.

The Status member indicates whether the CreateFile or CloseHandle call returns without an error. So we fill it with STATUS_SUCCESS.

 fastcall IofCompleteRequest, pIrp, IO_NO_INCREMENT

 mov eax, STATUS_SUCCESS

 ret

DispatchCreateClose endp

Now we should call IoCompleteRequest indicating the driver has completed IRP processing and returns it to the I/O Manager. And the
returning by DispatchCreateClose STATUS_SUCCESS indicates that the device is ready to accept another I/O requests.

The first parameter of the oCompleteRequest tells the I/O Manager which IRP is to be completed. And the second determines a system-
defined constant of runtime priority increase of the thread that requested the operation. The driver should compensate any thread that
possibly waits for a device operation by giving a priority boost. For example, for sound devices DDK recommends to use
IO_SOUND_INCREMENT which is equal to 8.

In our case we simply use IO_NO_INCREMENT equal to zero, which means the runtime priority of current thread remains the same.

IofCompleteRequest is a fastcall-function (notice the 'f' symbol in the prefix). There is also its stdcall counterpart IoCompleteRequest.
But I use fastcall for the educational purposes.

5.6 Calling conventions

Three calling conventions are used in the Windows NT kernel APIs: __stdcall, __cdecl and __fastcall. Unfortunately, the last one is not
supported by masm compiler.

The __fastcall calling convention specifies the first two DWORD arguments are passed in ECX and EDX registers; all other arguments
are passed right to left. Called function pops the arguments from the stack.

Fastcall-function's names are mangled (decorated) as follows: @ sign is prefixed to the name, @ sign appended followed by a decimal
number that indicates the count of bytes passed to the function as parameters. For example, IofCompleteRequest is decorated like this:

@IofCompleteRequest@8

The decorated name above means that it is a fastcall-function, its exported name is IofCompleteRequest and it takes two DWORD
arguments.

This function is defined in \include\w2k\ntoskrnl.inc as follows (pay no attention on the SYSCALL):

EXTERNDEF SYSCALL @IofCompleteRequest@8:PROC
IofCompleteRequest TEXTEQU <@IofCompleteRequest@8>

To make it easier to call fastcall-functions I wrote this macro:

fastcall MACRO api:REQ, p1, p2, px:VARARG

local arg

 ifnb <px>
 % for arg, @ArgRev(<px>)
 push arg
 endm
 endif

 ifnb <p1>

 ifdifi <p1>, <ecx>
 mov ecx, p1
 endif

 ifnb <p2>
 ifdifi <p2>, <edx>
 mov edx, p2
 endif
 endif

 endif

 call api

ENDM

Here is the simplified version of macro. I've placed it in \include\w2k\ntddk.inc. There is no such macro in original ntddk.h, of course.

5.7 Memory buffer management

The I/O Manager performs three types of buffer management:

● buffered I/O;

● direct I/O;

● neither I/O.

Here we'll examine only usage of DeviceIoControl function for I/O processing. The usage of ReadFile and WriteFile is a bit different. An
example of using ReadFile to read the device data you will find in \src\NtBuild.

5.7.1 Buffered I/O

Starting I/O operation, the I/O Manager validates all virtual memory pages spanned by the user's buffer are valid. Then it allocates a
nonpaged pool buffer of a size sufficient to hold the user's request.

While creating an IRP the I/O Manager copies the user's buffer data into the allocated buffer and passes its address to the driver in
AssociatedIrp.SystemBuffer field of _IRP structure. The size of copied data is stored into Parameters.DeviceIoControl.InputBufferLength
field of IO_STACK_LOCATION structure (Tail.Overlay.CurrentStackLocation of _IRP points to this structure and the pointer can be
fetched with IoGetCurrentIrpStackLocation macro).

The driver handles the IRP and copies output data (if any) into the very same buffer.

When IRP is marked as completed by calling IofCompleteRequest the I/O Manager copies data from the allocated buffer to the user's
buffer and then frees the allocated buffer. The amount of data to copy is placed by the driver in IoStatus.Information field of _IRP
structure.

As you can see the I/O Manager copies data twice. Thus buffered I/O is used by slower devices that do not generally handle large data
transfers as our VirtToPhys device does.

But this method has one big advantage - I/O Manager solves all possible problems with probable memory access errors by itself. We
don't need to take care of it.

5.7.2 Direct I/O

This method is used for direct memory access (DMA).

I not examine in details this type of I/O handling, since it does not applicable in a scope of this doc.

When the I/O Manager creates the IRP, it locks the user's buffer into the memory (makes it nonpaged) which is made it accessible to
driver code via an address above 80000000h. The I/O Manager stores a description of this memory in the form of a
MemoryDescriptorLlist (MDL) and places pointer to it into the _IRP's MdlAddress field. An MDL specifies the physical memory occupied
by the buffer. When the I/O Manager has finished IRP usage, it unlocks the buffer

5.7.3 Neither I/O

The I/O Manager doesn't perform any buffer management in any way. It's up to the discretion of the device driver.

The driver gets the user-mode virtual address of the input buffer in the Type3InputBuffer parameter of the stack location, and the user-
mode virtual address of the output buffer in the UserBuffer field of the IRP. Neither address is of any use unless you know you're
running in the same process context as the user-mode caller. And as the monolithic device driver's writers we know it for sure.

Also we know the monolithic device driver is always called from user-mode at IRQL = PASSIVE_LEVEL. So, no need to take care about
the presence of the user buffer in memory. Memory Manager will do all necessary job if the user buffer is swapped out.

Only one more problem remains - the user-mode code can provide us with wrong buffer address or free it somehow (in the case of
multithreaded application) while data transfer is in progress.

We have to foresee such situations and to handle it correctly. Thus the usage of Structured Exception Handling (SEH) is necessary (see
example \src\Article4-5\NtBuild). But bear in mind, the SEH in the kernel-mode is in its entirety the same as in user-mode, though you
can't handle all exceptions this way. For example, the attempt of divide by zero will result in BSOD even with installed SEH-handler!

5.8 Dispatch Routine for IRP_MJ_DEVICE_CONTROL

Once the driver has announced Dispatch routine for IRP_MJ_DEVICE_CONTROL, the I/O Manager starts passing IRPs directly to the
driver code when user-mode client calls DeviceIoControl.

 and dwBytesReturned, 0

If any error will occur, the I/O Manager should not copy anything in the user buffer.

 mov esi, pIrp
 assume esi:ptr _IRP

 IoGetCurrentIrpStackLocation esi
 mov edi, eax
 assume edi:ptr IO_STACK_LOCATION

IoGetCurrentIrpStackLocation macro gives us a pointer to the IRP stack location - the pointer to IO_STACK_LOCATION structure
containing some necessary data.

 .if [edi].Parameters.DeviceIoControl.IoControlCode == IOCTL_GET_PHYS_ADDRESS

We must not handle the receipt of an unrecognized I/O control code.

NUM_DATA_ENTRY equ 4
DATA_SIZE equ (sizeof DWORD) * NUM_DATA_ENTRY
IOCTL_GET_PHYS_ADDRESS equ CTL_CODE(FILE_DEVICE_UNKNOWN, 800h, METHOD_BUFFERED, FILE_READ_ACCESS +
FILE_WRITE_ACCESS)

The IOCTL_GET_PHYS_ADDRESS control code we are waiting for is defined in common.inc as well as two constants. This file is included
both in the driver and in its client source codes.

 .if ([edi].Parameters.DeviceIoControl.OutputBufferLength >= DATA_SIZE) && ([edi].Parameters.
DeviceIoControl.InputBufferLength >= DATA_SIZE)

We check the size of user's input and output buffers. If both are less than required we stop processing.

The OutputBufferLength and InputBufferLength fields of IO_STACK_LOCATION structure correspond to nOutBufferSize and
nInBufferSize parameters of DeviceIoControl function.

 mov edi, [esi].AssociatedIrp.SystemBuffer

From the IRP stack location we obtain the pointer to the system buffer. This buffer contains now the data user-mode client have sent to
us. In our case this data is four virtual addresses our driver have to translate to physical ones.

 assume edi:ptr DWORD

The compiler should know that edi points to DWORD value. Without this statement we have to use PTR DWORD each time we touch edi.

 xor ebx, ebx
 .while ebx < NUM_DATA_ENTRY

 invoke GetPhysicalAddress, [edi][ebx*(sizeof DWORD)]

 mov [edi][ebx*(sizeof DWORD)], eax
 inc ebx
 .endw

We are repeatedly cycling NUM_DATA_ENTRY times through buffer and for each dword (namely virtual address) we meet call
GetPhysicalAddress whose output (namely physical address) is putted back into the buffer at the same place.

 mov dwBytesReturned, DATA_SIZE
 mov status, STATUS_SUCCESS

When we reached this point our job is done. So we put number of processed bytes into dwBytesReturned and indicate success in status.

 .else
 mov status, STATUS_BUFFER_TOO_SMALL
 .endif
 .else
 mov status, STATUS_INVALID_DEVICE_REQUEST
 .endif

If something went wrong status receives an appropriate error code.

 assume edi:nothing

 push status
 pop [esi].IoStatus.Status

Completing the IRP we place in Status field of the status block a current status value. This status code will be translated to the
corresponding Win32 error code. Below is the correspondence for three status codes we used:

Nt Status Win32 Error

STATUS_SUCCESS NO_ERROR

STATUS_BUFFER_TOO_SMALL ERROR_INSUFFICIENT_BUFFER

STATUS_INVALID_DEVICE_REQUEST ERROR_INVALID_FUNCTION

You can call RtlNtStatusToDosError exported by ntdll.dll to translate kernel status to Win32 error. The user-mode applications call
GetLastError to determine the cause of the failure.

 push dwBytesReturned
 pop [esi].IoStatus.Information

The Information field of the status block gets number of bytes I/O Manager has to copy into the user's buffer. The caller of
DeviceIoControl will receive this value in a variable pointed to by lpBytesReturned.

 assume esi:nothing

 fastcall IofCompleteRequest, pIrp, IO_NO_INCREMENT

 mov eax, status
 ret

Call IofCompleteRequest to complete the IRP we have just handled.

And remember we must handle the receipt of even unrecognized I/O control code by setting the I/O status block with an appropriate
NTSTATUS value, setting its Information field to zero, and completing the IRP with a PriorityBoost of IO_NO_INCREMENT.

5.9 Memory Address Translation

The kernel-mode code can translate virtual addresses to physical one. And MmGetPhysicalAddress kernel function is for this purpose.
The GetPhysicalAddress function I use here does basically the same (not considering Physical Address Extension mode). Unfortunately I
have no opportunity to describe in detail what is going on here. Please refer to "Inside Microsoft Windows 2000" by David Solomon and
Mark Russinovich. There you will find the detailed description. Here is my commented code:

GetPhysicalAddress proc dwAddress:DWORD

 ; Converts virtual address in dwAddress to corresponding physical address

 mov eax, dwAddress
 mov ecx, eax

 shr eax, 22 ; (Address >> 22) => Page Directory Index, PDI
 shl eax, 2 ; * sizeof PDE = PDE offset

 mov eax, [0C0300000h][eax] ; [Page Directory Base + PDE offset]

 .if (eax & (mask pde4kValid)) ; .if (eax & 01y)
 ; PDE is valid
 .if !(eax & (mask pde4kLargePage)) ; .if (eax & 010000000y)
 ; small page (4kB)
 mov eax, ecx
 ; (Address >> 12) * sizeof PTE => PTE offset
 shr eax, 10
 and eax, 1111111111111111111100y
 add eax, 0C0000000h ; add Page Table Array Base
 mov eax, [eax] ; fetch PTE

 .if eax & (mask pteValid) ; .if (eax & 01y)
 ; PTE is valid
 ; mask PFN (and eax, 11111111111111111111000000000000y)
 and eax, mask ptePageFrameNumber

 ; We actually don't need these two lines
 ; because of module base is always page aligned
 and ecx, 00000000000000000000111111111111y ; Byte Index

 add eax, ecx ; add byte offset to physical address
 .else
 xor eax, eax ; error
 .endif
 .else
 ; large page (4mB)
 ; mask PFN (and eax, 11111111110000000000000000000000y)
 and eax, mask pde4mPageFrameNumber
 and ecx, 00000000001111111111111111111111y ; Byte Index
 add eax, ecx ; add byte offset to physical address
 .endif
 .else
 xor eax, eax ; error
 .endif

 ret

GetPhysicalAddress endp

GetPhysicalAddress returns the physical address that corresponds to the given virtual address.

5.10 DriverUnload Routine

DriverUnload routine's work is straightforward, as it must delete each symbolic link and device object that has been created. This
routine is called whenever the user-mode code calls ControlService with SERVICE_CONTROL_STOP, but only if there are no more
opened handles of the device. If at least one open handle exists, device can receive IPR and thus it should remains in memory.

 invoke IoDeleteSymbolicLink, addr g_usSymbolicLinkName

 mov eax, pDriverObject
 invoke IoDeleteDevice, (DRIVER_OBJECT PTR [eax]).DeviceObject

The unload routine undoes the work of DriverEntry. Namely calling IoDeleteSymbolicLink we remove symbolic link from the Object
Manager namespace and call to the IoDeleteDevice removes the device object itself.

As I have previously mentioned, you are in kernel-mode and must release all allocated resources.

The table 5-1 sums up all you have to know about process context and IRQL of main driver's routines. The info in this table is correct
only in the case of monolithic or highest-level driver.

User-mode Kernel-mode Process context IRQL

StartService DriverEntry System PASSIVE_LEVEL

CreateFile IRP_MJ_CREATE User-mode caller PASSIVE_LEVEL

DeviceIoControl IRP_MJ_DEVICE_CONTROL User-mode caller PASSIVE_LEVEL

ReadFile IRP_MJ_READ User-mode caller PASSIVE_LEVEL

WriteFile IRP_MJ_WRITE User-mode caller PASSIVE_LEVEL

CloseHandle IRP_MJ_CLEANUP, IRP_MJ_CLOSE User-mode caller PASSIVE_LEVEL

ControlService,,SERVICE_CONTROL_STOP DriverUnload System PASSIVE_LEVEL

Table 5-1. Correspondence of user-mode functions to the driver's routines

5.11 How to compile

:make

set drv=skeleton

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native /ignore:4078 %drv%.
obj rsrc.obj

del %drv%.obj
move %drv%.sys ..

echo.
pause

We have already analyzed all that in the third part. I have added the /ignore:4078 option, since we have two sections with the same
name but with the different attributes. Otherwise the linker produces warning:

LINK : warning LNK4078: multiple "INIT" sections found with different attributes (E2000020)

5.12 Adding resources

We also put the version resource into the driver image providing the driver's version information. It can be done using a common
resource script (see rsrc.rc).

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,0
 PRODUCTVERSION 1,0,0,0
 FILEFLAGSMASK 0x3fL
 FILEFLAGS 0x0L
 FILEOS 0x40004L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904E4"
 BEGIN
 VALUE "Comments", "Written by Four-F\0"
 VALUE "CompanyName", "Four-F Software\0"
 VALUE "FileDescription", "Kernel-Mode Driver VirtToPhys v1.00\0"
 VALUE "FileVersion", "1, 0, 0, 0\0"
 VALUE "InternalName", "VirtualToPhysical\0"
 VALUE "LegalCopyright", "Copyright © 2003, Four-F\0"
 VALUE "OriginalFilename", "VirtToPhys.sys\0"
 VALUE "ProductName", "Kernel-Mode Driver Virtual To Physical Address Converter\0"
 VALUE "ProductVersion", "1, 0, 0, 0\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

Nothing special here. It's compiled and linked as usual.

5.13 A little more words about debugging

You can obtain very useful information about the driver and its device with the help of SoftICE's driver and device commands. See
SoftICE Command Reference for details. Here is how it looks on my machine:

Figure 5-2. The output of driver VirtToPhys

Figure 5-3. The output of device device devVirtToPhys

As you understand, the information SoftICE displays, is obtained from DRIVER_OBJECT and DEVICE_OBJECT structures accordingly.
Using this info it is possible easily to find these objects in the memory and set breakpoints on its routines.

Copyright © 2002-2004 Four-F, four-f@mail.ru

mailto:four-f@mail.ru

	freewebs.com
	The full-function driver

